
VEMALA TOC: towards better national scale carbon leaching estimates

> Inese Huttunen, Marie Korppoo, Markus Huttunen, SYKE

University of Eastern Finland, Kuopio 3.11.2022

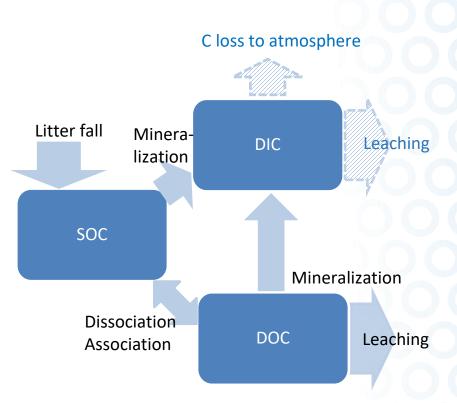
Background

VEMALA modelling system:

- national scale nutrient loading tool used in WFD implementation and international reporting (e.g. HELCOM)
- VEMALA model is simulating TN, TP (and their fractions), SS, TOC loading for all Finnish watersheds,
- Consists of several submodels hydrological model, terrestrial models, river transport model, lake biogeochemical model
- Catchment scale model, spatial unit: 3th level sub-catchment (60 km²) and 4th level sub-catchment (around 2 km²), Time step – one day
- Aim of the SysteemiHiili project is to further develop and apply the VEMALA modelling tool for TOC loading and CO₂ emissions from inland waters simulation in present conditions, climate change and land use scenarios at catchment scale

 TOC concentration – runoff relationship (VEMALA v1 version)
 Forsius M., et al. 2017. Observed and predicted future changes of total organic carbon in the lake Päijänne catchment (southern Finland): Implications for water treatment of the Helsinki metropolitan area
 Terrestrial C processes depends on C storage, temperature, moisture, land use/soil class
 Moldel is operational, results for all Finnish watersheds, results are in user inteface
 YM funding, 2019-2020

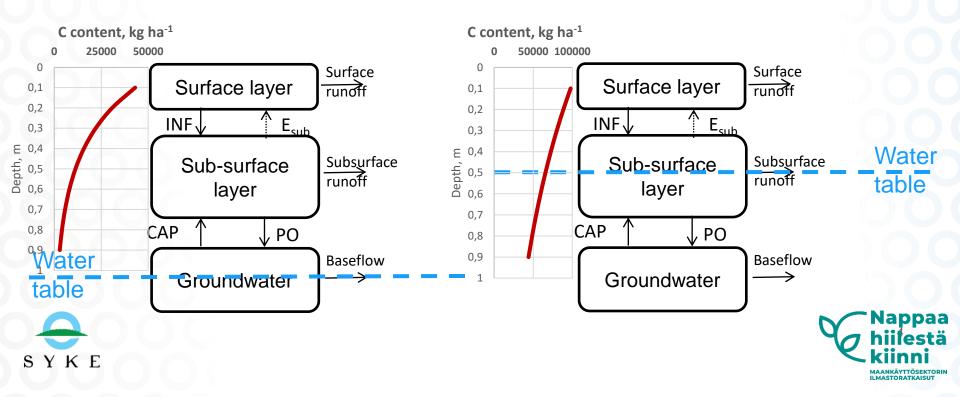
Physically based hydrological model for mineral and peat soils


· Improved C process description in soils and lakes

Suitable for CC and land use change scenario simulation

VEMALA TOC processes in the soil

- Based on INCA-C model (Futter et al., 2007)
 3 C storages in the soil solid organic carbon (SOC), dissolved organic carbon (DOC), dissolved inorganic carbon (DIC)
- Processes described in the model:
 - Mineralization of SOC and DOC (depends on T and soil moisture (SM))
 - Dissociation of SOC, Association of DOC
 - Leaching, Transport of DOC with subsurface runoff and baseflow
- 6 land use classes agriculture on clay, coarse and peat soils, forest on mineral soils, forest on undrained peat soils, forest on drained peatlands



Physically based hydrological model in TOC modelling

• **Mineral soil**, C is stored in the surface layer of the soil, then exponentially decreasing

• **Peat soil**, much higher C content, evenly distributed within the depth

DOC dynamics in the soil

DOC mass in soil, kg/ha

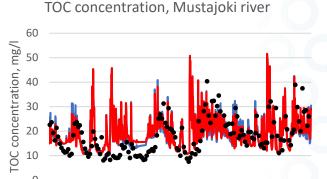
- DOC storage is increasing during low flow periods, and then flushed out with runoff events
- Baseflow is forming a steady DOC flow also during low flow periods
- Two soil temperature sensitivity paremeter values were tested Q_{10} (1.7 and 3.6)
- With higher Q_{10} there is higher DOC production in summer periods, higher leaching in autumn
- Soil moisture decrease is also elevating simulated DOC concentration in the soil

ΚE

SY

3,5 DOC load, kg/ha/day

DOC mass (Q10=1.7) - - DOC mass (Q10=3.6)

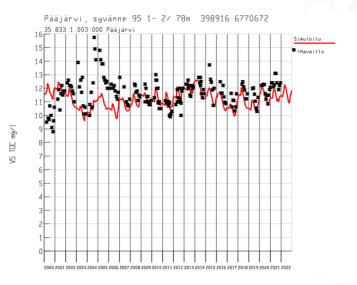

DOC load (Q10=1.7) — DOC load (Q10=3.6)

DOC mass storage and export from peat soil

TOC concentration simulation in Pääjärvi catchment

- New model has been calibrated by using intensive and excellent Pääjärvi catchment observation data, 6 river points and a lake point (Lammi Biological station)
- Calibration of the model:
 - Annual TOC loading from land use/soil classes compared to values in literature (Metsävesi project, etc.)
 - Daily TOC concentrations calibrated against daily observed in streams, lake
- Model simulates lake TOC balance: inflow loading, outflow loading and retention (42% in Pääjärvi, long residence time)

1.1.2020


Observed

1.1.2019

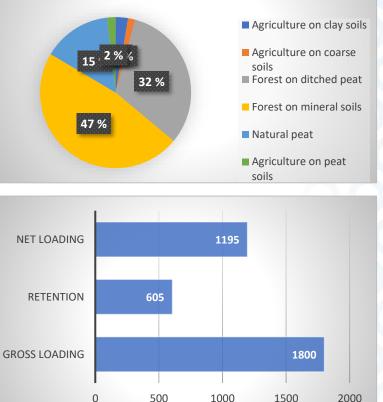
— 010=3.6

1.1.2018

-010=1.7

KE

SY


Summary of TOC loading from Finnish watersheds (results from previous version)

- The biggest source of TOC loading is forest on mineral soils (47%),
- Next source is forests on ditched peat soils (32%),
- Specific TOC loading from peat soils is around 2.5 to 3 times higher than from mineral soils.
- Mean simulated TOC specific loading for test basins is from forest on ditched peat soils 120 kg ha⁻¹ a⁻¹,
- Mean from natural peat soils 80 kg ha⁻¹ a⁻¹
- Mean from forest on mineral soils 39 kg ha⁻¹ a⁻¹,

- Mean from agriculture on mineral soils 22-47 kg ha⁻¹ a⁻¹
 - One cause of brownification of waters is elevated TOC loading from drained peat soils, models could be used to simulate the way to mitigate loading from drained peat soils

Source apportionment of national scale TOC loading

TOC loading. t vr⁻¹

Summary

Usage of VEMALA model:

- VEMALA model provides TOC loading, concentration for all lakes, rivers, also input for biogeochemical lake model
- TOC concentration could be added as one of the criteria in ecological classification of the water
 BlueAdapt bodies for WFD implementation work
 - CO₂ loss from water bodies could be used for IPCC estimates of national GHG budgets
 - VEMALA is used to study TOC and nutrient loading changes and mitigation in climate change scenarios in Systeemihiili, Blueadapt and other projects

Challenges:

lappaa

- Modelling the catchment scale with different land use/soil classes is challenging
- Hydrology is controling the TOC transport out of the soil, hydrological model for different soil textures is a key for TOC loading simulation
- SYKE Change in C stocks in soil for climate change effect simulation on TOC loading

Thank you!

More info about VEMALA:

https://www.syke.fi/en-US/Research__Development/Wate r/Models_and_tools/Models_for_riv er_basin_management_planning/A water_quality_and_nutrient_load_ model_system_for_Finnish_waters heds_VEMALA